Warm-up

CST/CAHSEE 7NS 2.4	Review 5NS1.4
35 Between which two integers is the value of $\sqrt{61}$?	What is the Prime Factorization of 48
A 6 and 7 B 7 and 8 C 8 and 9 D 9 and 10	
<u>Current</u>	Other 7NS1.2 Fill in the chart
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Simplifying Radicals Day 1

Standard: 2.0 Students understand and use such operations as taking the opposite, finding the reciprocal, taking a root, and raising to a fractional power. They understand and use the rules of exponents. Objective: Students can simplify radical expressions

Debrief warm-up.

Discuss order of operations

Discuss inverse operations. The inverse of root extraction is exponentiation

Ex 1) Simplify $\sqrt{16}$

$$\sqrt{16}$$

$$= \sqrt[2]{2 \cdot 2} \cdot 2 \cdot 2$$

$$= \sqrt{4 \cdot 4}$$

$$= 2 \cdot 2$$

$$= \sqrt{(4)^2}$$

$$= 4$$

"One way to simplify is to prime factor the radicand. When a value does not appear in the index, then a square root is implied. If the index is 2, we are looking for groups of 2/pairs of numbers"

A $\sqrt{}$ is in simplest form if -there are no perfect squares factors other than 1 in the radicand -No fractions are in the radicand -No radicals in the denominator

You try!

Simplify using 2 different ways. $\sqrt{81}$

$$\begin{array}{c|c}
\sqrt{81} & \sqrt{81} \\
= \sqrt[2]{3 \cdot 3 \cdot 3 \cdot 3} & = \sqrt[2]{9 \cdot 9} \\
= 3 \cdot 3 \\
= 9 & = \sqrt{(9)^2} \\
= 9
\end{array}$$

Ex 2) Simplify $\sqrt{48}$

$$\sqrt{48}$$

$$= \sqrt[3]{2 \cdot 2 \cdot 2 \cdot 2 \cdot 3}$$

$$= \sqrt{16 \cdot 3}$$

$$= \sqrt{16} \cdot \sqrt{3}^{*}$$

$$= 4\sqrt{3}$$

$$= \sqrt{16} \cdot \sqrt{3}^{*}$$

* Talk about product property of roots
$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$

"Square root of the product is equal to the product of the square roots"

Ask students to show another way to simplify $\sqrt{48}$ Possible answers

$$\sqrt{48} \qquad \sqrt{48} = \sqrt{4 \cdot 12} \qquad = \sqrt{4 \cdot 12} = 2\sqrt{12} \qquad = 2\sqrt{12}$$

Discuss why these are not completely simplified and how to continue

You Try! Simplify $\sqrt{45}$

$$\sqrt{45}$$

$$= \sqrt{3 \cdot 3 \cdot 5}$$

$$= 3\sqrt{5}$$

$$\sqrt{45}$$

$$= \sqrt{9 \cdot 5}$$

$$= \sqrt{9 \cdot \sqrt{5}}$$

$$= 3\sqrt{5}$$

Product Property of Roots $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$ where $a \ge 0$ and $b \ge 0$

Have students do "You try"! as a partner activity. Possible activities.

-One student can do a) and the other do b) then they can check each other's work -One student tells the other the steps to workout problem a) while the other student writes down the work, then they switch roles for b)

-Each student works out each problem and together they must have 2 different ways to simplify each problem.

You Try! Simplify

a)
$$\sqrt{9x^3}$$

 $\sqrt{9x^3}$
 $= \sqrt{9 \cdot \sqrt{x^2} \cdot \sqrt{x}}$
 $= 3x\sqrt{x}$
b) $\sqrt{8x^2}$
 \sqrt

Ex 4) Simplify

a)
$$\sqrt{50} \cdot \sqrt{18}$$

 $\sqrt{50} \cdot \sqrt{18}$
 $= \sqrt{50 \cdot 18}$
 $= \sqrt{5 \cdot 5 \cdot 2} \cdot \sqrt{2 \cdot 3 \cdot 3}$
 $= \sqrt{2 \cdot 25 \cdot 2 \cdot 9}$
 $= \sqrt{2 \cdot 2} \cdot 25 \cdot 9$
 $= \sqrt{2 \cdot 2} \cdot 5 \cdot 3$
 $= 30$
 $\sqrt{50} \cdot \sqrt{18}$
 $= \sqrt{50} \cdot \sqrt{18}$
 $= \sqrt$

b)
$$\sqrt{75xy} \cdot \sqrt{2x^3}$$

 $= \sqrt{75xy} \cdot \sqrt{2x^3}$
 $= \sqrt{75 \cdot 2 \cdot x \cdot x^3 \cdot y}$
 $= \sqrt{25 \cdot 3 \cdot 2 \cdot x \cdot x \cdot x \cdot x \cdot y}$
 $= 5xx\sqrt{6y}$
 $= 5x^2\sqrt{6y}$
 $= 5x^2\sqrt{6y}$
 $= 5x^2\sqrt{6y}$

You Try! Simplify

a)

$$\sqrt{6x} \cdot \sqrt{8x^2}$$

$$\sqrt{6x} \cdot \sqrt{8x^2}$$

$$= \sqrt{2 \cdot 3 \cdot 2 \cdot 4 \cdot x^2 \cdot x}$$

$$= 4x\sqrt{3x}$$

b) $\sqrt{18y} \cdot \sqrt{6y^5}$

$$= \sqrt{9 \cdot 2 \cdot y} \cdot \sqrt{2 \cdot 3 \cdot y^4 \cdot y}$$

$$= 3\sqrt{2y} \cdot y^2 \sqrt{2 \cdot 3y}$$

$$= 3y^2 \sqrt{2 \cdot y \cdot 2 \cdot 3 \cdot y}$$

$$= 3y^2 \cdot 2y \sqrt{3}$$

$$= 6y^3 \sqrt{3}$$

You Try! can be done as a partner activity or used as an exit ticket.

$$\sqrt{18y} \cdot \sqrt{6y^5}$$

= $\sqrt{9 \cdot 2 \cdot y \cdot 2 \cdot 3 \cdot y^2 \cdot y^2 \cdot y}$
= $3 \cdot 2 \cdot y \cdot y \cdot y \sqrt{3}$
= $6y^3 \sqrt{3}$

1 1 1